The Immunoglobulin-Like Superfamily Member IGSF3 is a Developmentally Regulated Protein that Controls Neuronal Morphogenesis

Alessia Usardi, Keerthana Iyer, Séverine M. Sigoillot, Antoine Dusonchet, Fekrije Selimi

Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France 75231, Cedex 05

Received 1 December 2015; revised 18 June 2016; accepted 18 June 2016

ABSTRACT: The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls

the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017 Keywords: development; cerebellum; cell adhesion mol-

ecules; Ig domains; neuronal morphogenesis

INTRODUCTION

Many steps of brain development involve cell-cell interactions, including neuronal migration, elongation of dendritic and axonal protrusions as well as formation and maintenance of synapses. The complexity and precise coordination of all these events have been illustrated in detail in the developing cerebellar cortex, in particular by the study of granule cells. Granule cell precursors (GCPs) migrate tangentially from the rhombic lip to the surface of the cerebellar primordium where they form the external granular layer (EGL) and go through a second period

Correspondence to: F. Selimi (fekrije.selimi@college-de-france. fr).

Contract grant sponsors: Investissements d'Avenir launched by the French Government and ANR; contract grant number: ANR-10-LABX-54 MEMO LIFE.

Contract grant sponsors: Fondation Bettencourt Schuller, Ecole des Neurosciences de Paris, Emergence UPMC, Association Française du Syndrôme de Rett, ATIP-AVENIR, FENS Boehringer Ingelheim award, and Fondation pour la Recherche Médicale.

Additional Supporting Information may be found in the online version of this article.

^{© 2016} Wiley Periodicals, Inc.

Published online 8 July 2016 in Wiley Online Library (wileyonlinelibrary.com).

DOI 10.1002/dneu.22412

of proliferation (Hatten and Heintz, 1995; Alder et al., 1996; Sotelo, 2004). Their differentiation begins in the inner EGL, where they extend their axons, the parallel fibers, before starting their radial migration along the Bergman glia, which serve as a scaffold. When they reach the internal granular layer, below the Purkinje cells, granule cells terminate their differentiation and are contacted by their inputs, the mossy fibers (Sotelo, 2004). Their axons, the parallel fibers, form synapses with their targets in the molecular layer, the Purkinje cells and the interneurons.

All these steps need to be finely orchestrated during development. The family of cell adhesion molecules (CAMs), which includes cadherins, Ig superfamily (IGSF) proteins and integrins, plays a crucial role in this process (Shapiro et al., 2007; Maness and Schachner, 2007). IGSFs are characterized by at least one immunoglobulin (Ig) domain, and generally contain a transmembrane and a short intracellular domain. Many, like NCAM, L1 or DSCAM proteins, also contain Fibronectin type III domains (Shapiro et al., 2007). Perturbations of the function of IGSF proteins lead to defects in neuronal migration and axonal growth. For example, the phenotype of L1-CAM knockout mice is characterized by pathfinding errors of corticospinal, retino-collicular, thalamocortical and callosal axons, as well as dendritic misorientation of cortical pyramidal neurons and abnormal positioning of dopaminergic neurons (Dahme et al., 1997; Cohen et al., 1998; Maness and Schachner, 2007).

Four EWI proteins form a little studied subfamily of IGSF proteins: EWI-2/IGSF8/PGRL, EWI-F/ Ptgfrn/CD9P-1, EWI-101/IGSF2, and EWI-3/IGSF3. They all share a Glu-Trp-Ile (EWI) motif in their extracellular region, are strongly similar to each other (23-35% aminoacid similarity), and differ by the number of C2-type IgG domains that they contain (Ruegg et al., 1995; Charrin et al., 2001; Clark et al., 2001; Stipp et al., 2001). IGSF8, Ptgfrn and IGSF2 have been involved in diverse cellular processes requiring cell-cell interaction such as oocyte fertilization (Ellerman et al., 2003), viral infection (Montpellier et al., 2011; Gordón-Alonso et al., 2012; Bhella, 2015), T-cell proliferation, and formation and maintenance of the immune synapse (Rivas et al., 1995). IgSF3 is expressed in several organs including the brain (Saupe et al., 1998) and IgSF8 is expressed in the growing axons of olfactory sensory neurons (Ray and Treloar, 2012). Despite their expression in the brain, the function of EWI proteins in this organ remains elusive.

Here, we show that IGSF3 is expressed in various brain regions in a developmentally regulated manner.

In the cerebellum, IGSF3 is expressed in granule cells during their differentiation and controls their morphogenesis. We also present evidence that IGSF3 forms a complex with the tetraspanin TSPAN7 in the developing brain, that TSPAN7 controls axonal branching and that IGSF3 restricts the size of TSPAN7 clusters in cultured cerebellar granule cells. Thus IGSF3 is a new modulator of neuronal morphogenesis that could play this role partially through interaction with the tetraspanin TSPAN7.

METHODS

All animal protocols and animal facilities were approved by the Comité Régional d'Ethique en Expérimentation Animale (no. 00057.01) and the veterinary services (C75 05 12).

Quantitative RT-PCR

RNA samples were obtained from mouse cerebella at different ages or mixed cerebellar cultures using the RNeasy Mini kit (Qiagen). cDNA were amplified using the Super-Script® VILOTM cDNA Synthesis kit (Life technologies) according to manufacturer's instructions. Quantitative PCR was performed using the Light Cycler 480 SYBR Green I Master Mix (Roche Applied Science) and the following primers: Igsf3 Fwd 5'-aagtacagatcgttagcacggt-3' and Rev 5'ggtgtgacattcatactcgcc-3', Igsf8 Fwd 5'-ggactctggcttttatgag cccttggaactcacctgt-3' and Rev 5'-catcaccggccacaaacct-3', Ptgfrn Fwd 5'-gaccaaggccactacaagtgt-3' and Rev 5'-gacgt ggtagacgcgatacat-3', Tspan7 Fwd 5'-atggcatcgaggagaatgg ag-3' and Rev 5'-tgagcacatagggagcatttg-3', Gapdh Fwd 5'cctgcgacttcaacagcaact-3' and Rev 5'-ggtccagggtttcttactcc ttg-3', Rpl13 Fwd 5'-cactctggaggagaaacggaagg-3' and Rev 5'-gcaggcatgaggcaaacagtc-3'.

cDNA Constructs

The following plasmids were used: pCAG (Matsuda and Cepko, 2004), pCAG-mbGFP: membrane GFP cDNA was subcloned into the pCAG vector, pCAG-Igsf3: mouse *Igsf3* cDNA (Accession number: BC052892) obtained from the pSPORT1-Igsf3 vector (Dharmacon) was subcloned into the pCAG vector, pBI-GFP: a gift from Bert Vogelstein (Addgene plasmid # 16623), pBIGFP-Igsf3 (mouse *Igsf3* cDNA was subcloned into the pBI-GFP vector), pIRES2eGFP-Tspan7 (Bassani et al., 2012).

Neuronal Cultures and Gene Expression Modification

We prepared dissociated cultures of mouse cerebellar neurons using a modified version of a previously described

protocol (Tabata et al., 2000). Briefly, neurons were dissociated from P0 cerebella obtained from Swiss mice, in the case of mixed cerebellar cultures, or P6 cerebella for granule cell cultures. Ninety microliters of the cell suspension $(5 \times 10^6 \text{ cells/mL} \text{ for mixed cerebellar cultures and } 2.5 \times 10^6 \text{ cells/mL} \text{ for granule cell cultures})$ were plated onto the centre of poly-L-ornithine (0.5 mg/mL) coated glass coverslips. Cells were maintained in medium supplemented with bovine serum albumin (100 µg/mL) and a glial proliferation inhibitor, cytosine arabinoside (4 µ*M*).

For loss of function experiments, granule cells were treated at DIV0 with either 0.5 μ M Accell Non-Targeting siRNA as control (Thermo Fisher Scientific) or 0.5 μ M Mouse siIgsf3 siRNA following manufacturer's instructions (Thermo Fisher Scientific). For gain of function experiments, granule cells were transfected at DIV1 using Lipofectamine 2000 (Life Technologies) according to the manufacturer's protocol. After 96 h granule cells were fixed for immunocytochemistry or lysed for mRNA extraction.

Transfection of HEK293 Cells

HEK293 cells were maintained in DMEM-glutamax 4.5 g/ L glucose plus pyruvate (Life Technologies) supplemented with 10% fetal bovine serum and 100 U/mL penicillin/100 μ g/mL streptomycin, at 37°C in a 5% CO₂ atmosphere. Cells were transfected 24 h after plating using Lipofectamine 2000 (Life Technologies). After 48 h, cells were fixed for immunocytochemistry or lysed for protein extraction.

In Situ Hybridization

In situ hybridization was performed using a previously described protocol with few modifications (Bally-Cuif et al., 1992). Briefly, 100 μ m thick-floating vibratome sections were obtained from paraformaldehyde fixed mouse brains at postnatal day 0 (P0), P7, and P21. The probe sequence for *Igsf3* corresponded to 1608 to 2479 bp for mouse cDNA NM_207205.1. The riboprobe was used at a final concentration of 2 $\mu g/\mu$ L. Duration of the proteinase K (10 μ g/mL) treatment was 30 s for P0 and P7 brain sections, and 10 min for P21 brain sections. The anti-digoxigenin conjugated to alkaline phosphatase antibody (Biocompare, Roche) was used at a dilution of 1/2000.

Immunohistochemistry

Swiss mice (Janvier, France) or hGFAP-GFP mice were perfused with 4% paraformaldehyde in PBS, pH 7.4. Brains were postfixed for 1 h (for adult mice) or overnight (for P0 and P7) with 4% PFA in PBS at 4°C, then cryoprotected in 30% sucrose/PBS for two nights. 30 μ m-thick sections were obtained using a freezing microtome.

Blocking of nonspecific binding sites was performed using 4% Donkey serum/PBS. Primary antibodies were diluted in 1% Donkey serum/1% Triton X-100/PBS and incubated at 4°C overnight. Donkey Alexa Fluor® 488, 594, and 647 conjugated secondary antibodies (Thermo Fisher Scientific) were diluted in 1% Donkey serum/1% Triton X-100/PBS. Washes were performed with 1% Triton X-100/PBS.

Immunocytochemistry

Cells were fixed with cold 4% PFA in PBS for 15 min at room temperature, rinsed with PBS and incubated with 4% Donkey serum/0.2% Triton X-100/PBS. Primary and secondary antibodies were diluted in 0.2% Triton X-100/PBS. Nuclear Hoechst counterstaining was performed for 15 min at room temperature.

Primary Antibodies

Sheep anti-IGSF3 (1:750 for brain sections, 1:400 for fixed cells, R&D Systems), rabbit anti-IGSF3 (for Western blotting, 1:1000, Sigma), mouse anti-Calbindin (1:5000, Swant), guinea pig anti-GLAST (1:7000, Chemicon), anti-PAX6 (Covance, 1:300), anti-NCAM L1 (1:500, Millipore), guinea pig anti-Vglut1 (1:5000, Millipore), anti-TSPAN7 (1:500, a kind gift of Dr. Passafaro), anti-TAG1 (1:2, kindly provided by Pr. Hatten), mouse anti- β actin (1:50,000, Abcam).

Immunoprecipitation

P8 cerebella were homogenized in cold lysis buffer (50 mM tris-HCl pH 7.5, 2 mM EDTA, 150 mM NaCl, 1% Triton X-100, protease inhibitor cocktail (Sigma)). Protein crosslinking was performed using 2 mM dithiobis succinimidylpropionate (DSP) (ThermoFisher) for 30 min at room temperature, and stopped by adding 20 mM tris-HCl pH 7.5. Immunoprecipitation was performed by incubating with Dynabeads (Invitrogen) precoated with either 10 µg of goat/sheep IgG (Sigma) or 10 µg of anti-IGSF3 (R&D system) for 60 min at 4°C with constant rocking. After several washes with lysis buffer, immune complexes were eluted by resuspending the beads in sample buffer (6 M urea, 2% (v/v) SDS, 200 µL of 20 mg/mL bromophenol blue, 62.5 mM tris-HCl, 10% (v/v) β -mercaptoethanol, 20% (v/ v) glycerol) and heating the samples at 65°C for 15 min. Protein samples were resolved on a NuPAGE Novex 4-12% Bis-Tris gel (Invitrogen).

Protein Extraction and Immunoblotting

HEK-293H cells (Gibco) were plated at a density of 5×10^5 /well on coverslips previously coated with 10 µg/mL poly-D-lysine (Sigma). The day after plating, cells were transfected with constructs of interest using Lipofectamine 2000 (Invitrogen). Cells were harvested in lysis buffer (50 mM tris-HCl pH 7.5, 150 mM NaCl, 1% (v/v) SDS, 0.2% (v/v) sodium azide, 5% (w/v) sodium deoxycholate, 0.1% (v/v) NP-40), sonicated for 5 s three times and

78 Usardi et al.

incubated at 4°C for 30 min. Lysates were then centrifuged at 20,000g for 30 min and supernatants were collected for protein dosage using the Pierce BCA Protein Assay kit (Thermo Fisher Scientific). 10 μ g of proteins were resolved on a NuPAGE Novex 4 to 12% Bis-Tris gel (Invitrogen). Immunoblotting was performed in 0.2% Tween/PBS, and signals were revealed using Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare) or SuperSignal West Femto Chemiluminescent Substrate (Thermo Fisher).

Microscopy and Data Analysis

Images for analysis of the morphology of granule cells were acquired on a Leica SP5 confocal microscope at $40 \times$ magnification using a 0.5 µm *z*-step (Fig. 5), or on the spinning disk confocal microscope at 25× magnification using a 0.3 µm *z*-step size (Fig. 6). Acquired images were stitched together using the Grid/Collection Stitching plugin of ImageJ (Preibisch et al., 2009). Dendrites and axons were traced on a maximal stack projection for each stack using the NeuronJ plugin of ImageJ. The main axon, defined as the thinnest and longest neurite coming out of the granule cell soma, was first traced, followed by collaterals starting from this main axon. Dendritic branches were traced and measured to provide total dendritic length, mean number of dendritic branches and mean dendrite size per neuron.

Images for quantification of granule cell/Purkinje cell synapses (VGLUT1/CABP positive puncta) in mixed cultures were acquired on the confocal microscope at $63 \times$ magnification using a 0.2 µm *z*-step. Synaptic contacts were analyzed using an ImageJ-customized macro. The CaBP and the VGLUT1 objects found above a user-defined threshold were selected. Image calculator was used to extract the signal common to the CaBP and VGLUT1 images: the number and volume of these puncta were quantified with the three-dimensional Object counter plugin from ImageJ.

Images for quantification of Tspan7 puncta were acquired on the confocal microscope at $63 \times$ magnification zoom 4. Tspan7 puncta were analyzed using the imageJ tool "analyze particles" after background substraction (rolling ball radius, 50 pixels) and selection of a user-defined threshold. Puncta with a size between 0.01 and 0.8 μ m² were included in the quantification.

The level of IGSF3 knockdown was assessed on images taken at $20 \times$ magnification with the confocal microscope. Fluorescence intensity was measured as integrated density using ImageJ after backgroung substraction (rolling ball radius, 50 pixels).

Statistical Analysis

Statistical analysis was conducted using the GraphPad Prism software. After checking normality of distribution and equality of variance, unpaired *t*-test was used to compare two samples, or two-way ANOVA to perform comparisons in experiments with two changing parameters [Fig. 5(B)]. The Kolmogorov-Smirnov test was used to compare

Developmental Neurobiology

the frequency distributions of TSPAN7 cluster size in Figure 7.

RESULTS

IGSF3, a New IGSF-CAM Developmentally Regulated in the Brain

Expression of Igsf8 and Igsf3 mRNAs in the human brain and the role of EWI proteins in regulating cellcell interactions in diverse systems (Zhang et al., 2003; Stipp et al., 2003; Ellerman et al., 2003; Kolesnikova et al., 2009; Gordón-Alonso et al., 2012) suggest a role during normal brain development. Accordingly, both Igsf3 and Igsf8 mRNAs are expressed at high levels and dynamically in the mouse cerebellum during the first three postnatal weeks, a critical period for the development of this structure, while Ptgfrn and Igsf2 are expressed at low levels or absent, respectively [Fig. 1(A)]. In situ hybridization (ISH) experiments for Igsf3, the most abundant member of the family in the developing cerebellum, confirmed this strikingly dynamic expression. Igsf3 mRNA was detected at high levels at P0, at the beginning of the intense period of granule cells proliferation, and P7, a stage of intense cellular migration and differentiation, while it was undetectable in the adult cerebellum. These ISH analyses also showed high and dynamically regulated levels of Igsf3 mRNA in various other brain regions during the first postnatal weeks, such as the olfactory bulb, cortex, hippocampus, superior colliculus, inferior olive and spinal cord [Fig. 1(B)]. Immunofluorescent labeling showed the correlation of the expression pattern of the IGSF3 protein with the one found for the mRNA using in situ hybridization [Fig. 1(C)]. The specificity of the polyclonal antibody recognizing IGSF3 was demonstrated using transfection of HEK293 cells (Supporting Information Fig. 1) and knockdown experiments in cerebellar granule cells [Supporting Information Fig. 2(C)]. In the cerebral cortex, the IGSF3 protein is found in the most superficial layer at P0 and becomes restricted to layer 2/3 with maturation. In the hippocampus, IGSF3, initially seen in all subfields, becomes restricted to the dentate gyrus. In the olfactory bulb, IGSF3 localizes to both mitral cells and granule cell layers.

Thus IGSF3 is expressed in a developmentally regulated pattern in various brain regions. This is reminiscent of the pattern observed for other molecules belonging to the IGSF-CAMs family such as F3, TAG-1, and L1-CAM (Kuhar et al., 1993; Powell

Figure 1 IGSF3 is expressed in the developing mouse brain. (A) mRNA expression of the four EWI family members assessed by quantitative RT-PCR at different stages of mouse cerebellar development. Data are normalized to the housekeeping gene *Gapdh*. Mean \pm SEM of three independent experiments. (B) Expression of the *Igsf3* mRNA in various regions of the mouse brain detected by *in situ* hybridization at postnatal day 0 (P0), P7, and adult stage. Scale bar = 500 µm. (C) Expression of the IGSF3 protein detected by anti-IGSF3 immunohistochemistry on sections from P0, P7, and adult mouse brain. Scale bar = 500 µm.

et al., 1997; Stottmann and Rivas, 1998; Sakurai et al., 2001).

IGSF3 is a Marker of Differentiating Cerebellar Granule Cells and Parallel Fibers

The various functions played by IGSF-CAMs depend on the tight spatiotemporal control of their cellular and subcellular localization during development. In the cerebellum, for example, F3/contactin undergoes sharp changes in its cellular distribution, concomitant with neuronal differentiation (Bizzoca et al., 2003, 2009). To gain further insight into the role of IgSF3 during brain development, we performed a detailed analysis of its cellular and subcellular localization in the mouse cerebellum at P0 and P7.

In situ hybridization experiments showed that Igsf3 mRNA strongly localizes to the developing internal granular layer (IGL) [Fig. 2(A)], whereas the IGSF3 protein is found both in the IGL and the nascent molecular layer [Fig. 2(B,C)]. This pattern is consistent with an expression of IGSF3 by postmitotic granule cells, which extend their axons in the molecular layer and are the major cell type in the IGL. PAX6 is a transcription factor expressed in both mature granule cells and their precursors in the external granular layer (EGL) (Engelkamp et al., 1999; Yamasaki et al., 2001). Co-immunostaining experiments showed that nuclei from IGSF3 expressing cells were positive for PAX6 both in mouse brain sections [Fig. 3(A)], and in dissociated cerebellar cultures at DIV0, a timepoint when cells can be clearly isolated [Fig. 3(B)], thus confirming expression of IGSF3 by granule cells.

Figure 2 IGSF3 is expressed in the developing granule cell and molecular layers of the cerebellum. (A) *Igsf3* mRNA expression detected by *in situ* hybridization in the mouse cerebellum at P0 and P7. Scale bar = 100 μ m. (B) IGSF3 protein localization detected by immunohistochemistry in the mouse cerebellum at P0 and P7. Scale bar = 100 μ m. (C) Co-immunolabeling on P7 cerebellar sections using the anti-IGSF3 antibody and an antibody against calbindin (CaBP) to label Purkinje cells specifically. Scale bar = 10 μ m. External granular layer (EGL), molecular layer (IGL).

Purkinje cells extend their dendrites in the molecular layer and could thus be another source of IGSF3 in the cerebellum. Co-immunolabeling with an antibody against Calbindin (CaBP), a cytoplasmic marker specifically labeling PCs (Takahashi-Iwanaga et al., 1986), revealed IGSF3 around Purkinje cell dendrites [Fig. 2(C)], but ISH experiments did not show any evident expression of *Igsf3* mRNA in Purkinje cells [Fig. 2(A)]. These results suggest that Purkinje cells do not express IGSF3 and that its presence in the developing molecular layer is most likely due to its localization in parallel fibers.

The intense staining for IGSF3 detected at P0, a time when only few granule cells and parallel fibers are present, suggested that glia might be another source of IGSF3 expression in the developing brain. Indeed, the developing molecular layer also contains fibers from Bergmann glia that provide a scaffold for granule cell radial migration towards the IGL. Immunolabeling for IGSF3 using sections from a reporter mouse line with fluorescently labeled astrocytes and radial glial cells (Nolte et al., 2001) revealed some localization of IGSF3 immunostaining in fibers corresponding to Bergman glia in the P7 molecular layer [Fig. 3(C,D)]. Moreover, some isolated glial cells, identified in cerebellar cultures at DIV0 using immunolabeling for the glutamate aspartate transporter (GLAST) (Schmitt et al., 1997), clearly expressed IGSF3 [arrows in Fig. 3(E)]. Taken together, these results show that differentiating granule cells are the major source of IGSF3 in the developing cerebellum, while glia could also express this marker at early stages of development.

The successive stages of granule cell differentiation are characterized by the expression of different combinations of cell adhesion molecules, in particular of the IGSF-CAM family, with specific subcellular localization. TAG-1 is transiently expressed in pre-migratory granule cells in the inner part of the external granular layer (iEGL) starting from the time of parallel fiber extension (Yamamoto et al., 1986; Kuhar et al., 1993; Baeriswyl and Stoeckli, 2008), and disappears from granule cell axons when they connect Purkinje cell dendrites (Stottmann and Rivas, 1998). L1-CAM is expressed by more differentiated granule cells, and localizes in fasciculating parallel fibers (Persohn and Schachner, 1987). IGSF3 could likewise characterize a specific stage of granule cell differentiation. Extensive colocalization between IGSF3 and both TAG1 in the iEGL [Fig. 4(A,B)], and L1 in the molecular layer [Fig. 4(C,D)] was shown by co-immunolabeling experiments in P7 cerebellar sections. IGSF3 was also detected, albeit at lower levels, all around granule cell somata and ascending axons in the internal granular layer. The high levels of IGSF3 found in granule cell axonal terminals around Purkinje cell dendrites suggested it might be present at the parallel fiber/Purkinje cell (PF/ PC) synapses. However, colocalization experiments showed only limited colocalization of IGSF3 with VGluT1, a marker of mature PF/PC synapes (Miyazaki et al., 2003) [Fig. 4(E,F)], suggesting that IGSF3 disappears when PF/PC synapses starts to mature.

Taken together, these results show that IGSF3 in the cerebellum is a marker of developing, but not mature, granule cells, both at the pre- and postmigratory stages. These findings raise several possibilities as to the developmental processes in which IGSF3 could be implicated during cerebellar development.

IGSF3 Regulates Cerebellar Granule Cell Differentiation

IGSF-CAMs have been implicated in several processes controlling cerebellar development, including proliferation, differentiation, migration and synaptogenesis

Figure 3 IGSF3 is expressed by granule cells and by some glial cells in the developing cerebellum. (A) Co-immunolabeling for IGSF3 and PAX6, a marker of postmitotic granule cells, in P7 mouse brain sections. Scale bar = 50 μ m. (B) Co-immunolabeling for IGSF3 and PAX6, a marker of postmitotic granule cells, in mixed cerebellar cultures at days *in vitro* 0 (DIV0). Scale bar = 20 μ m. (C) Immunolabeling for IGSF3 (green) in cerebellar sections from a transgenic mouse expressing eGFP in astrocytes and radial glial cells (GFAP-eGFP). Scale bar = 10 μ m. (D) High magnification of the region indicated in C (white rectangle). IGSF3 immunostaining overlaps partially with some glial fibers, particularly in the ML. Scale bar = 10 μ m. (E) Co-immunolabeling for IGSF3 and GLAST, a marker of glial cells, in mixed cerebellar cultures at DIV0. Hoechst counterstaining in blue. IGSF3 is expressed in some glial cells (arrows). Scale bar = 20 μ m. External granular layer (EGL), molecular layer (ML), Purkinje cell layer (PCL), internal granular layer (IGL).

Figure 4 IGSF3 is concentrated in developing granule cell axonal terminals. (A) Coimmunolabeling for IGSF3 and TAG-1, a marker for premigratory granule neurons, in P7 mouse brain sections. Scale bar = 50 μ m. (B) High magnification of the region defined by the white rectangle in (A) shows colocalization of IGSF3 with TAG-1. Scale bar = 10 μ m. (C) Co-immunolabeling for IGSF3 and L1-CAM, a marker for granule cell axonal terminals, in P7 mouse brain sections. Scale bar = 50 μ m. (D) High magnification of the region defined by the white rectangle in (C) shows extensive colocalization of IGSF3 with L1-CAM. Scale bar = 10 μ m. (E) Co-immunolabeling for IGSF3 and vGLUT-1, a marker for mature parallel Fiber/Purkinje cell synapses, in P7 mouse brain sections. Scale bar = 50 μ m. (F) High magnification of the region defined by the white rectangle in (E) shows only partial colocalization of IGSF3 with vGLUT1. Scale bar = 10 μ m. External granular layer (EGL), molecular layer (ML), Purkinje cell layer (PCL), internal granular layer (IGL).

(Yoshihara et al., 1991; Burden-Gulley and Lemmon, 1995; Buttiglione et al., 1996, 1998; Walsh and Doherty, 1997; Stoeckli, 2004; Washbourne et al., 2004; Wiencken-Barger et al., 2004; Maness and Schachner, 2007; Baeriswyl and Stoeckli, 2008; Hortsch and Umemori, 2009; Xenaki et al., 2011; Schäfer and Frotscher, 2012). Given the expression pattern of IGSF3 in the cerebellum, it could be involved in any of these processes. To gain further insights, functional experiment using knockdown or overexpression approaches were performed in cerebellar cultures. First, we developed an RNA interference approach to suppress IGSF3 expression using small interfering RNAs (siRNA). In mixed cerebellar cultures, the expression pattern of Igsf3 mirrors the one found in vivo, since its mRNA levels are highest during the first few days with a peak at DIV4 [Fig. 5(A) and Supporting Information Fig. 2(A)], and they are higher than the levels of Igsf8 mRNA. A mixture of four different siRNAs targeting Igsf3 (siIgsf3) applied at DIV0 induced more than 80% down-regulation of Igsf3 mRNA by DIV4 when compared with control nontargeting siRNAs (siCTR) as assessed by qRT-PCR [Supporting Information Fig. 2(B)], and greatly reduced the signal obtained by IGSF3 immunolabeling [Supporting Information Fig. 2(C)]. No significant effect on the mRNA levels of Igsf8 and Bai3, two other genes expressed in cerebellar mixed cultures, could be detected in these conditions, further showing the specificity of our approach.

To test whether IGSF3 is important for their survival and proliferation, we performed knockdown of IGSF3 in cerebellar granule cell cultures right after seeding. In both Igsf3 and control siRNAs treated cultures, the total cell density remained stable between DIV1 and DIV4, with only a small, but not significant, decrease between DIV2 and DIV4 after IGSF3 knockdown [Fig. 5(B), left graph]. The proportion of proliferating cells in granule cell cultures, as assessed by Ki67 labeling, was not changed by siIgsf3 treatment compared with siCTR at the different stages [Fig. 5(B), right graph]. Thus IGSF3 does not control the proliferation and survival of granule cells.

IGSF3 could play a role in GC differentiation. To test this hypothesis, we quantified dendritic and axonal morphology in isolated GFP-labeled granule cells following knockdown or overexpression of IGSF3. A 65% increase in total axonal length was shown in granule cells treated with siIGSF3 when compared with control cells [siCTR: $393.3 \pm 29.77 \ \mu$ m and siIGSF3: $651.8 \pm 80.09 \ \mu$ m. Unpaired *t*-test, *p* < 0.05, Fig. 5(C)], while axon branching was not affected. The total dendritic length per neuron and the

mean dendrite length were significantly decreased by IGSF3 knockdown when compared with controls [total length: siCTR: 588.4 \pm 94.2 μ m and siIGSF3: $330.9 \pm 25.5 \ \mu m$. Unpaired *t*-test, p < 0.01; mean length: siCTR: $19.9 \pm 2.2 \ \mu m$ and siIGSF3: $13.22 \pm 1.13 \ \mu m$. Unpaired *t*-test, p < 0.05; Fig. 5(C)], while the number of dendritic processes was not changed. Conversely, IGSF3 overexpression in granule cells resulted in significantly shorter axons [CTR: $1096 \pm 110.4 \ \mu m$ and IGSF3: 769 ± 61.54 μ m, unpaired *t*-test, p < 0.05, Fig. 5(D)] and less axonal branches. Dendritic morphology was also affected with slightly less numerous but longer dendrites following IGSF3 overexpression leading to an increased total dendritic length per neuron [total length - CTR: $271.3 \pm 26.8 \ \mu m$ and IGSF3: $451.6 \pm 55.2 \ \mu m$, unpaired *t*-test, p < 0.01; mean length – CTR: $11.04 \pm 0.87 \ \mu m$ and IGSF3: $23.57 \pm 1.43 \ \mu m$, unpaired *t*-test, p < 0.0001; Fig. 5(D)]. Altogether, these results show that IGSF3 controls granule cell differentiation by inhibiting the growth of their axons and altering their dendritic morphology. Through this inhibition of axonal growth, IGSF3 could control the timing of synapse formation. Quantification of the number and size of VGLUT1 puncta in cerebellar mixed cultures at DIV4 after IGSF3 knockdown did not reveal any changes compared with control conditions [Supporting Information Fig. 2(D)].

Overall, our results show that a major role for IGSF3 is to control the morphological differentiation of cerebellar granule cells, before they make synaptic contacts with their targets. No role was identified in other processes that can be regulated by other IGSF-CAMs such as cell proliferation and survival, or synaptogenesis.

IGSF3 is in a Complex with the Tetraspanin TSPAN7 and Negatively Modulates the Size of TSPAN7 Clusters

L1-CAM promotes neurite outgrowth by either homophilic binding or heterophilic binding to other Ig-CAMs, such as NCAM (Grumet and Edelman, 1988; Lemmon et al., 1989). Given the well-known role of L1-CAM during cerebellar development (Sakurai et al., 2001), we tested whether it could interact with IGSF3 by performing affinitypurification of IGSF3 from P8 cerebellar [Fig. 6(B), top panel] or forebrain homogenates (data not shown). In both cases, L1-CAM could not be detected in the IGSF3-containing molecular complexes.

EWI proteins can bind directly to tetraspanins (Stipp et al., 2001; Sala-Valdés et al., 2006), which are transmembrane proteins with diverse functions such as regulation of cell migration, fusion and signaling (Hemler, 2005). Tetraspanins thus could be interacting partners of IGSF3 and play a role during cerebellar development. Using database mining (Doyle et al., 2008; http://mouse.brain-map.org/; 24/ 09/2015) and analysis of mRNA expression levels by

Developmental Neurobiology

qRT-PCR [Fig. 6(A)], we found that tetraspanin 7 (TSPAN7) is highly expressed during cerebellar development starting at E17. A sharp increase in its expression was detected after P7, concomitant with granule cell differentiation. In situ hybridization data from the BGEM database showed that TSPAN7 was highly expressed by cerebellar granule cells during development [http://www.stjudebgem.org/, Fig. 6(A)]. In cultured hippocampal neurons, TSPAN7 overexpression increases the number of axonal and dendritic filopodia (Bassani et al., 2012). Accordingly, overexpression of TSPAN7 in cultured cerebellar granule cells significantly increases the number of axon collaterals [CTR: 7.33 ± 1.17 ; TSPAN7: 11.03 ± 1.17 ; unpaired *t*-test, p < 0.05, Fig. 6(B)]. It does not change other parameters such as total axon length, and the size and number of dendritic branches [Fig. 6(B)].

We hypothesized that TSPAN7 and IGSF3 could interact and regulate neuronal morphogenesis. Indeed, unlike L1-CAM, TSPAN7 was readily detected in IGSF3 affinity-purified samples from P8 cerebellar extracts showing that IGSF3 and TSPAN7 form a complex in the developing mouse cerebellum [Fig. 7(A)]. Furthermore, immunolabeling of HEK293H cells co-transfected with cDNAs coding for both IGSF3 and TSPAN7 showed the presence of IGSF3 in TSPAN7 domains at the plasma membrane [Fig. 7(B)]. Immunostaining of cultured cerebellar granule cells also detected partial colocalization of endogenous IGSF3 and TSPAN7, in particular in neurites [Fig. 7(C)]. Overall, our results show that IGSF3 forms a complex with TSPAN7 in heterologous and neuronal cells and in the developing mouse brain, while it does not stably interact with L1-CAM.

The tetraspanin TSPAN7 forms clusters in developing cerebellar granule cells [Fig. 7(C)]. Its expression in the cerebellum increases when IGSF3's expression starts to decrease at P7 and overexpression of either TSPAN7 or IGSF3 has an opposite effect on axonal branching. To test whether IGSF3 could influence TSPAN7 localization and function, we performed knockdown of IGSF3 followed by TSPAN7 immunostaining in cultured cerebellar granule cells. High-resolution imaging and quantification of the TSPAN7 clusters show that at DIV4, the size of TSPAN7 clusters was significantly increased by IGSF3 knockdown while their number was unchanged [Fig. 7(D)]. Our results thus suggest that IGSF3 controls neuronal morphogenesis partly through its ability to negatively modulate the size of TSPAN7 clusters.

DISCUSSION

The role of the EWI subfamily of IGSF-CAMs during brain development is still unknown. Our study shows that IGSF3, one of its four members, is expressed in various neuronal populations during the formation of neuronal circuits. In the cerebellum, it is transiently expressed in granule cells before their final maturation. It is highly concentrated in their axon terminals where it colocalizes with TAG-1 and L1, two other IgCAMs. Functional analysis shows that IGSF3 controls the differentiation of cultured cerebellar granule cells, in particular by inhibiting axonal growth. Moreover, IGSF3 and the tetraspanin TSPAN7 are part of the same molecular complex in the developing brain, TSPAN7 promotes axonal

Figure 5 IGSF3 controls cerebellar granule cell morphogenesis. (A) Expression of Igsf3 and Igsf8 mRNAs in cerebellar granule cell cultures at different days in vitro (DIV) assessed by quantitative RT-PCR. Data are relative to the housekeeping gene Rpl13. Mean \pm SEM of three independent experiments. (B) Left, cell density in cerebellar granule cell cultures at different DIVs. siRNA treatment was started at DIV0. siCTR: Accell nontargeting control siRNA; siIGSF3: Accell siRNA targeting mouse siIGSF3. No significant effect was detected. Two-way ANOVA. Right, percentage of proliferating cells expressing the proliferation marker Ki67 in cerebellar granule cell cultures at different DIVs. Mean \pm SEM, three to six independent experiments per condition. No significant effect was detected. Two-way ANOVA. (C) Top, images from representative cerebellar granule cells transfected with membrane GFP. siCTR, Accell nontargeting control siRNA; siIGSF3, Accell siRNA targeting mouse siIGSF3. Treatment started at DIV0, analysis at DIV4. Scale bar = 50 μ m. Bottom, quantitative analysis of total dendritic length, number and mean length of dendrites as well as number of branches and total axonal length per granule cell. Mean \pm SEM of three independent experiments, 20 to 25 cells, *p < 0.05. Unpaired *t*-test. (D) Top, images from representative granule cells transfected with the empty pCAG vector + pCAG-mbGFP (CTR) or pCAG-IGSF3 + pCAGmbGFP (IGSF3) at DIV1 and analyzed at DIV4. Scale bar = 50 μ m. Bottom, quantitative analysis of total dendritic length, number and mean length of dendrites as well as number of branches and total axonal length per granule cell. Mean \pm SEM of three independent experiments, 20 to 25 cells,****p* < 0.001, ***p* < 0.01, **p* < 0.05. Unpaired *t*-test.

Figure 6 The tetraspanin TSPAN7 regulates axonal morphogenesis of cerebellar granule cells. (A) Upper left, expression of *Tspan7* mRNA in mouse cerebellum at different developmental stages assessed by quantitative RT-PCR. Data are relative to the housekeeping gene *Gapdh*. Mean \pm SEM of three independent experiments. Upper right and bottom, *Tspan7* mRNA brain expression at P7 analyzed by *in situ* hybridization on coronal and sagittal sections (Brain Gene Expression Map, http://www.stjudebgem.org/). (B) Left, images from representative granule cells transfected with the pIRES-GFP vector (CTL) or pTSPAN7-IRES-GFP vector (TSPAN7) at DIV1 and analyzed at DIV4. Scale bar = 50 µm. Right, quantitative analysis of the total dendritic length, the number and the mean length of dendrites as well as the number of branches and total axonal length per granule cell. Mean \pm SEM of 4 independent experiments, 21 cells, unpaired *t*-test, **p* < 0.05.

Developmental Neurobiology

Figure 7.

Developmental Neurobiology

branching and IGSF3 negatively modulates the size of TSPAN7 clusters in neurons. These results suggest a new signaling pathway for the regulation of neuronal differentiation during brain development.

In the cerebellum, different IGSF-CAMs mark different stages of granule cell maturation (Kuhar et al., 1993; Stoeckli, 2010). In the early postnatal period, the external granular layer (EGL) contains granule cell precursors (GCPs), whose proliferation is sustained by homotypic interneuronal contacts and whose differentiation is induced by interactions with astrocytes (Gao et al., 1991). Postmitotic/premigratory granule cells express TAG-1, and sit in the inner part of the external granular layer (Pickford et al., 1989; Furley et al., 1990; Yamamoto et al., 1990; Kuhar et al., 1993; Stottmann and Rivas, 1998). After a period of tangential migration, their soma migrates radially along glial fibers towards the internal granular layer, while the axon grows to form the parallel fibers. At this stage they express L1, another IGSF-CAM that is highly concentrated in granule cells axonal terminals (Lindner et al., 1983; Xenaki et al., 2011). IGSF3 is found in both TAG-1 positive and L1 positive granule cells. It is particularly concentrated in the developing molecular layer where it completely overlaps with L1, but is also found in the cell bodies of granule cells in the IGL. Therefore, IGSF3 is a new marker that defines postmitotic differentiating granule cells, and whose expression is downregulated once differentiation is completed. Recently, it was shown that the level of the IGSF8 protein in the axon terminals of olfactory sensory neurons is downregulated by sensory input during development and is upregulated by lesion-induced reinnervation of the olfactory bulb (Ray and Treloar, 2012). Similarly F3 and TAG-1 are also regulated upon lesion (Haenisch et al., 2005; Soares et al., 2005). IGSF3 expression is downregulated at the time of mossy fiber synaptogenesis on granule cells and in many other neuronal populations after circuit maturation, suggesting a regulation of IGSF3 expression by neuronal activity.

IGSF-CAMs regulate cell migration, axon growth, fasciculation and guidance, and synaptic plasticity (Schachner, 1997; Walsh and Doherty, 1997; Kamiguchi and Lemmon, 2000). They play important roles in cerebellar granule cells during development. They control the differentiation of granule cell precursors, with TAG-1 and F3 acting antagonistically to regulate the proliferation of GCPs (Xenaki et al. 2011). TAG-1 is required for granule cell axon pathfinding (Buttiglione et al., 1998; Baeriswyl and Stoeckli, 2008) and the use of TAG-1 interfering antibodies in cerebellar cultures and slices is enough to impair axon emergence (Wang et al., 2011). L1 promotes axon growth, GC migration and synapse plasticity (Lindner et al., 1983; Lemmon et al., 1989; Schäfer and Frotscher, 2012). Our results, obtained using both loss-of-function and gain-of-function experiments, show that, while the protein IGSF3 does not regulate neuronal survival and proliferation, it is an additional player in the regulation of granule cell differentiation, in particular axon elongation. It remains to be determined whether IGSF3 shares other functions with L1 and TAG-1 in the development of the cerebellum. IGSF3 is found in glial cells in dissociated cerebellar cultures at early stages and some IgSF3 can be localized in Bergmann glia fibers. Moreover the time course of IgSF3 expression in the developing cerebellum is similar to the one of astrotactin-1, a transmembrane protein that regulates granule cell migration along radial glia, suggesting another possible role of IGSF3 (Wilson et al., 2010).

Proteins belonging to the IGSF-CAMs family play different functions depending on the neuronal population and their subcellular localization. Similarly,

Figure 7 IGSF3 negatively regulates the size of TSPAN7 clusters in cerebellar granule cells. (A) IGSF3/TSPAN7 complex in the mouse brain detected by IGSF3 affinity-purification from P8 cerebella. 4% Total input lysate (IN), 4% flow through (FT), 50% immunoprecipitates (IP); control: beads coated with IgG (IP IgG), IGSF3 pull down: beads coated with IGSF3 antibody (IP IGSF3). Samples were probed for the presence of IGSF3 (upper panel), L1-CAM (middle panel), TSPAN7 (bottom panel). (B) Co-localization of IGSF3 and TSPAN7 shown by immunofluorescent labeling of transfected HEK293H cells. Scale bar = 10 μ m. (C) Co-localization of endogenous IGSF3 and TSPAN7 shown by immunofluorescent labeling of DIV4 cerebellar granule cells. Scale bar = 10 μ m. (D) Top, images from representative cerebellar granule cells immunostained for endogenous IGSF3 and TSPAN7 with or without IGSF3 knockdown. siCTR, Accell nontargeting control siRNA; siIGSF3, Accell siRNA targeting mouse siIGSF3. Treatment started at DIV0, analysis at DIV4. Scale bar $=10 \ \mu m$. Bottom, quantitative analysis of the mean number per field and mean size of TSPAN7 clusters in cerebellar granule cell cultures. Mean ± SEM of four independent experiments, 40 fields, unpaired t-test for number and Kolmogorov-Smirnov test for size, ***p < 0.0001. The frequency distributions are significantly different (Kolmogorov-Smirnov test, p < 0.0001).

IGSF3 could play diverse and specific roles in the different cell types and regions where it is expressed during brain development, and in the adult brain. In particular, IGSF3 expression is very high in regions such as the olfactory bulb and the hippocampus in the adult, suggesting a potential role in the integration of adult born neurons into neuronal circuits.

Competition between IgCAMs regulates neuronal differentiation. For example TAG-1 is able to antagonize inhibitory effects on granule cell proliferation and axonal growth induced by F3, another IgCAM (Buttiglione et al., 1998; Xenaki et al., 2011). Similarly to F3 and contrary to L1, IGSF3 inhibits axonal elongation suggesting a possible interplay between IGSF3 and TAG-1/L1 for the control of axonal elongation during development. L1 has been shown to bind to Ig-class recognition molecules including TAG-1, F3, and NCAM (Thelen et al., 2002). Our affinity purification experiments did not reveal an interaction of IgSF3 with L1 in postnatal cerebellar extracts, suggesting that IGSF3 signaling involves other molecular partners.

Tetraspanins are a large family of membrane proteins expressed in a broad range of cell types and tissues. Their main function is to spatially organize transmembrane protein partners into functional microdomains called tetraspanin-enriched microdomains (TEMs) (Hemler, 2005). IGSF8 can directly bind several tetraspanins (Clark et al., 2001; Stipp et al., 2001; Charrin et al., 2003; Sala-Valdés et al., 2006), and both IGSF8 and PTGFRN interact indirectly with the tetraspanin CD151 (Clark et al., 2001; Sala-Valdés et al., 2006). IGSF8 links TEMs and the actin cytoskeleton by forming a bridge between tetraspanins and ezrin-radixin-moesin proteins (Sala-Valdés et al., 2006). Regulation of the cytoskeleton dynamics, through the control of both actin and microtubule filaments, is necessary for axon growth and guidance (Dent and Gertler, 2003; Schaefer et al., 2008). Our results show that, in the developing brain and cerebellum, IGSF3 forms a molecular complex with the tetraspanin TSPAN7, which is highly expressed by cerebellar granule cells during development and in the adult cerebellum, and can regulate axon branching. IGSF8/EWI-2 binding to tetraspanins has been shown to prevent their interaction with TGF- β receptors and thereby inhibit TGF- β signaling (Wang et al., 2015). TSPAN7 modulates the morphology of dendritic cells and HIV transfer by modulating actin nucleation (Ménager and Littman, 2016). Thus these results altogether suggest that IGSF3 prevents TSPAN7's interaction with proteins inducing actin nucleation, thereby inhibiting modulation of axon morphogenesis by TSPAN7. TSPAN7 has been recently shown to be a key molecule for synapse maturation and function in hippocampal neurons. While down-regulation of IGSF3 expression at early stages of neuronal differentiation does not modify the ability of granule cells to form synaptic contacts with Purkinje cells, it remains to be determined whether IGSF3 regulates the final number of synapses.

Furthermore, IGSF3 might interact with various partners to regulate different neuronal parameters, such as axon versus dendrite morphogenesis. Interesting candidates are molecules of the extracellular matrix. For example, vitronectin binds to CHL1 and promotes neurite outgrowth in cerebellar granule cells (Katic et al., 2014). Vitronectin and IGSF3 have similar localization patterns in the developing cerebellum, suggesting a possible interaction and interplay between these molecules for the regulation of neuronal morphogenesis during development.

This description of the developmental expression and functional role of IGSF3 during brain development opens new perspectives on the little studied EWI family of IGSF-CAMs. EWI proteins regulate a fundamental process, neuronal morphogenesis, and might have multiple functions as has been shown over the years for other IGSF-CAMS such as L1-CAM. The association of IGSF3 with TSPAN7 also points to the potential implication of EWI proteins in the etiology of neurodevelopmental disorders. Indeed, mutations affecting the gene coding for TSPAN7 are associated with cognitive defects in humans (Zemni et al., 2000; Abidi et al., 2002). An impaired TSPAN7-IGSF3 interaction following pathogenic mutations remains to be demonstrated and could lead to defects in brain development.

Authors thank M. Albert for technical assistance, Dr. C. Racca (Newcastle University, UK) for helpful discussions; Pr. M. E. Hatten (Rockefeller University, USA) for the anti-TAG1 antibody, Dr. Passafaro (University of Milan, Italy) for the anti-TSPAN7 antibody; Dr. A. Koulakoff (CIRB, France) for the hGFAP-GFP mice; J. Teillon, N. Quenech'du, and P. Mailly from the CIRB Imaging Facility; and J.-C. Graziano from the CIRB Animal Facility.

REFERENCES

- Abidi FE, Holinski-Feder E, Rittinger O, Kooy F, Lubs HA, Stevenson RE, Schwartz CE. 2002. A novel 2 bp deletion in the TM4SF2 gene is associated with MRX58. J Med Genet 39:430–433.
- Alder J, Cho NK, Hatten ME. 1996. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17:389–399.
- Baeriswyl T, Stoeckli ET. 2008. Axonin-1/TAG-1 is required for pathfinding of granule cell axons in the developing cerebellum. Neural Develop 3:7.

Developmental Neurobiology

90 Usardi et al.

- Bally-Cuif L, Alvarado-Mallart RM, Darnell DK, Wassef M. 1992. Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. Development 115:999–1009.
- Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, Gianfelice A, Sala C, et al. 2012. The X-linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking. Neuron 73:1143–1158.
- Bhella D. 2015. The role of cellular adhesion molecules in virus attachment and entry. Philos Trans R Soc Lond B Biol Sci 370:20140035.
- Bizzoca A, Virgintino D, Lorusso L, Buttiglione M, Yoshida L, Polizzi A, Tattoli M, et al. 2003. Transgenic mice expressing F3/contactin from the TAG-1 promoter exhibit developmentally regulated changes in the differentiation of cerebellar neurons. Dev Camb Engl 130:29–43.
- Bizzoca A, Corsi P, Gennarini G. 2009. The mouse F3/contactin glycoprotein. Cell Adhes Migr 3:53–63.
- Burden-Gulley SM, Lemmon V. 1995. Ig superfamily adhesion molecules in the vertebrate nervous system: Binding partners and signal transduction during axon growth. Semin Dev Biol 6:79–87.
- Buttiglione M, Revest JM, Rougon G, Faivre-Sarrailh C. 1996. F3 neuronal adhesion molecule controls outgrowth and fasciculation of cerebellar granule cell neurites: A cell-type-specific effect mediated by the Ig-like domains. Mol Cell Neurosci 8:53–69.
- Buttiglione M, Revest JM, Pavlou O, Karagogeos D, Furley A, Rougon G, Faivre-Sarrailh C. 1998. A functional interaction between the neuronal adhesion molecules TAG-1 and F3 modulates neurite outgrowth and fasciculation of cerebellar granule cells. J Neurosci Off J Soc Neurosci 18:6853–6870.
- Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, et al. 2001. The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276:14329–14337.
- Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, et al. 2003. EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373:409–421.
- Clark KL, Zeng Z, Langford AL, Bowen SM, Todd SC. 2001. PGRL is a major CD81-associated protein on lymphocytes and distinguishes a new family of cell surface proteins. J Immunol Baltim Md 1950 167:5115–5121.
- Cohen NR, Taylor JS, Scott LB, Guillery RW, Soriano P, Furley AJ. 1998. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol CB 8:26–33.
- Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N. 1997. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat. Genet 17: 346–349.
- Dent EW, Gertler FB. 2003. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227.
- Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, et al. 2008. Application of a translational

Developmental Neurobiology

profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762.

- Ellerman DA, Ha C, Primakoff P, Myles DG, Dveksler GS. 2003. Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol Biol Cell 14:5098–5103.
- Engelkamp D, Rashbass P, Seawright A, van Heyningen V. 1999. Role of Pax6 in development of the cerebellar system. Dev Camb Engl 126:3585–3596.
- Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM. 1990. The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61:157–170.
- Gao WO, Heintz N, Hatten ME. 1991. Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6:705–715.
- Gordón-Alonso M, Sala-Valdés M, Rocha-Perugini V, Pérez-Hernández D, López-Martín S, Ursa A, Álvarez S, et al. 2012. EWI-2 association with α-actinin regulates T cell immune synapses and HIV viral infection. J Immunol 189:689–700.
- Grumet M, Edelman GM. 1988. Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms. J Cell Biol 106:487– 503.
- Haenisch C, Diekmann H, Klinger M, Gennarini G, Kuwada JY, Stuermer CAO. 2005. The neuronal growth and regeneration associated Cntn1 (F3/F11/Contactin) gene is duplicated in fish: Expression during development and retinal axon regeneration. Mol Cell Neurosci 28:361–374.
- Hatten ME, Heintz N. 1995. Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18:385–408.
- Hemler ME. 2005. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811.
- Hortsch M, Umemori H. 2009. The Sticky Synapse: Cell Adhesion Molecules and Their Role in Synapse Formation and Maintenance. Springer-Verlag New York.
- Kamiguchi H, Lemmon V. 2000. IgCAMs: bidirectional signals underlying neurite growth. Curr Opin Cell Biol 12:598–605.
- Katic J, Loers G, Kleene R, Karl N, Schmidt C, Buck F, Zmijewski JW, et al. 2014. Interaction of the cell adhesion molecule CHL1 with vitronectin, integrins, and the plasminogen activator inhibitor-2 promotes CHL1induced neurite outgrowth and neuronal migration. J Neurosci Off J Soc Neurosci 34:14606–14623.
- Kolesnikova TV, Kazarov AR, Lemieux ME, Lafleur MA, Kesari S, Kung AL, Hemler ME. 2009. Glioblastoma inhibition by cell surface immunoglobulin protein EWI-2, in vitro and in vivo. Neoplasia NYN 11:77–86.
- Kuhar SG, Feng L, Vidan S, Ross ME, Hatten ME, Heintz N. 1993. Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Dev Camb Engl 117:97–104.
- Lemmon V, Farr KL, Lagenaur C. 1989. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2:1597–1603.

- Lindner J, Rathjen FG, Schachner M. 1983. L1 monoand polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305:427– 430.
- Maness PF, Schachner M. 2007. Neural recognition molecules of the immunoglobulin superfamily: Signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26.
- Matsuda T, Cepko CL. 2004. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101:16–22.
- Ménager MM, Littman DR. 2016. Actin dynamics regulates dendritic cell-mediated transfer of HIV-1 to T cells. Cell 164:695–709.
- Miyazaki T, Fukaya M, Shimizu H, Watanabe M. 2003. Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17:2563–2572.
- Montpellier C, Tews BA, Poitrimole J, Rocha-Perugini V, D'Arienzo V, Potel J, Zhang XA, et al. 2011. Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint, and their effect on hepatitis C virus infection. J Biol Chem 286:13954–13965.
- Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, et al. 2001. GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86.
- Persohn E, Schachner M. 1987. Immunoelectron microscopic localization of the neural cell adhesion molecules L1 and N-CAM during postnatal development of the mouse cerebellum. J Cell Biol 105:569–576.
- Pickford LB, Mayer DN, Bolin LM, Rouse RV. 1989. Transiently expressed, neural-specific molecule associated with premigratory granule cells in postnatal mouse cerebellum. J Neurocytol 18:465–478.
- Powell SK, Rivas RJ, Rodriguez-Boulan E, Hatten ME. 1997. Development of polarity in cerebellar granule neurons. J Neurobiol 32:223–236.
- Preibisch S, Saalfeld S, Tomancak P. 2009. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinform Oxf Engl 25:1463–1465.
- Ray A, Treloar HB. 2012. IgSF8: A developmentally and functionally regulated cell adhesion molecule in olfactory sensory neuron axons and synapses. Mol Cell Neurosci 50:238–249.
- Rivas A, Ruegg CL, Zeitung J, Laus R, Warnke R, Benike C, Engleman EG. 1995. V7, a novel leukocyte surface protein that participates in T cell activation. I. Tissue distribution and functional studies. J Immunol Baltim Md 1950 154:4423–4433.
- Ruegg CL, Rivas A, Madani ND, Zeitung J, Laus R, Engleman EG. 1995. V7, a novel leukocyte surface protein that participates in T cell activation. II. Molecular cloning and characterization of the V7 gene. J Immunol Baltim Md 1950 154:4434–4443.
- Sakurai T, Lustig M, Babiarz J, Furley AJ, Tait S, Brophy PJ, Brown SA, et al. 2001. Overlapping

functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development. J Cell Biol 154:1259–1273.

- Sala-Valdés M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sánchez-Madrid F, Yáñez-Mó M. 2006. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675.
- Saupe S, Roizès G, Peter M, Boyle S, Gardiner K, De Sario A. 1998. Molecular cloning of a human cDNA IGSF3 encoding an immunoglobulin-like membrane protein: Expression and mapping to chromosome band 1p13. Genomics 52:305–311.
- Schachner M. 1997. Neural recognition molecules and synaptic plasticity. Curr Opin Cell Biol 9:627–634.
- Schaefer AW, Schoonderwoert VTG, Ji L, Mederios N, Danuser G, Forscher P. 2008. Cytoskeletal dynamics underlying neurite outgrowth. Dev Cell 15:146–162.
- Schäfer MKE, Frotscher M. 2012. Role of L1CAM for axon sprouting and branching. Cell Tissue Res 349:39–48.
- Schmitt A, Asan E, Püschel B, Kugler P. 1997. Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: nonradioactive in situ hybridization and comparative immunocytochemistry. J Neurosci Off J Soc Neurosci 17:1–10.
- Shapiro L, Love J, Colman DR. 2007. Adhesion molecules in the nervous system: Structural insights into function and diversity. Annu Rev Neurosci 30:451–474.
- Soares S, Traka M, von Boxberg Y, Bouquet C, Karagogeos D, Nothias F. 2005. Neuronal and glial expression of the adhesion molecule TAG-1 is regulated after peripheral nerve lesion or central neurodegeneration of adult nervous system. Eur J Neurosci 21:1169–1180.
- Sotelo C. 2004. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72: 295–339.
- Stipp CS, Kolesnikova TV, Hemler ME. 2001. EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem 276:40545–40554.
- Stipp CS, Kolesnikova TV, Hemler ME. 2003. EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5. J Cell Biol 163:1167–1177.
- Stoeckli ET. 2004. Ig superfamily cell adhesion molecules in the brain. Handb Exp Pharmacol 165:373–401.
- Stoeckli ET. 2010. Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family. Cell Adhes Migr 4:523–526.
- Stottmann RW, Rivas RJ. 1998. Distribution of TAG-1 and synaptophysin in the developing cerebellar cortex: Relationship to Purkinje cell dendritic development. J Comp Neurol 395:121–135.
- Tabata T, Sawada S, Araki K, Bono Y, Furuya S, Kano M. 2000. A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. J Neurosci Methods 104:45–53.
- Takahashi-Iwanaga H, Kondo H, Yamakuni T, Takahashi Y. 1986. An immunohistochemical study on the ontogeny of cells immunoreactive for spot 35 protein, a novel

92 Usardi et al.

Purkinje cell-specific protein, in the rat cerebellum. Brain Res 394:225–231.

- Thelen K, Kedar V, Panicker AK, Schmid RS, Midkiff BR, Maness PF. 2002. The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J Neurosci Off J Soc Neurosci 22: 4918–4931.
- Walsh FS, Doherty P. 1997. Neural cell adhesion molecules of the immunoglobulin superfamily: Role in axon growth and guidance. Annu Rev Cell Dev Biol 13:425– 456.
- Wang HX, Sharma C, Knoblich K, Granter SR, Hemler ME. 2015. EWI-2 negatively regulates TGF- β signaling leading to altered melanoma growth and metastasis. Cell Res 25:370–385.
- Wang W, Karagogeos D, Kilpatrick DL. 2011. The effects of Tag-1 on the maturation of mouse cerebellar granule neurons. Cell Mol Neurobiol 31:351–356.
- Washbourne P, Dityatev A, Scheiffele P, Biederer T, Weiner JA, Christopherson KS, El-Husseini A. 2004. Cell adhesion molecules in synapse formation. J Neurosci 24:9244–9249.
- Wiencken-Barger AE, Mavity-Hudson J, Bartsch U, Schachner M, Casagrande VA. 2004. The role of L1 in axon pathfinding and fasciculation. Cereb Cortex 14:121–131.
- Wilson PM, Fryer RH, Fang Y, Hatten ME. 2010. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J Neurosci Off J Soc Neurosci 30:8529–8540.

- Xenaki D, Martin IB, Yoshida L, Ohyama K, Gennarini G, Grumet M, Sakurai T, et al. 2011. F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation. Development 138:519–529.
- Yamamoto M, Boyer AM, Crandall JE, Edwards M, Tanaka H. 1986. Distribution of stage-specific neuriteassociated proteins in the developing murine nervous system recognized by a monoclonal antibody. J Neurosci Off J Soc Neurosci 6:3576–3594.
- Yamamoto M, Hassinger L, Crandall JE. 1990. Ultrastructural localization of stage-specific neurite-associated proteins in the developing rat cerebral and cerebellar cortices. J Neurocytol 19:619–627.
- Yamasaki T, Kawaji K, Ono K, Bito H, Hirano T, Osumi N, Kengaku M. 2001. Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Dev Camb Engl 128:3133–3144.
- Yoshihara Y, Oka S, Ikeda J, Mori K. 1991. Immunoglobulin superfamily molecules in the nervous system. Neurosci Res 10:83–105.
- Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrié A, Billuart P, McDonell N, et al. 2000. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 24:167–170.
- Zhang XA, Lane WS, Charrin S, Rubinstein E, Liu L. 2003. EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63:2665–2674.